
CHAPTER 5 

SIMULATIO� STUDY 
 

 

 The main objective of this study is to derive a similarity measure, in 

particular 2

pR , to compare two digital images. The MULFR model  

i iβ= +Y Xαααα , 1,2, ,i n= …     (5.1) 
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where ( )2,i I�D∼ σ0δδδδ ΙΙΙΙ  and ( )2,i I�D∼ τ0εεεε ΙΙΙΙ maybe be applied if the parameters 

1, , pα α =  …α , β , p, n, X, λ , σ , together with specific error distribution are known. 

Since it is impossible to study the performance of 2

pR  by considering all possible ‘real’ 

images, a simulation study is initiated by firstly selecting frequently used images such 

as Lena, Airplane and Peppers images (USC-SIPI Image Database) from which 

observed p-summary statistics are calculated and labeled as 1 2, , ,i i pix x x
′ =  …x . The 

corresponding unobserved p-summary statistics are labeled as 1 2, , ,i i piX X X
′ =  …X  . 

 

 

5.1 Selection of Parameters Values 

 Selection of parameters values should reflect real image applications. 

 

5.1.1 Selection of 1, , pα α =  …α  

 Since 2

pR  is invariant to translation of the data (see Section 4.4.4), the vector α  

will be fixed at the value [ ]0, ,0= …α . 
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5.1.2 Selection of β  

 The parameter β  should reflect the relationship with the ‘original’ image X and 

the ‘transformed’ image Y. For example if 1.0β = , this corresponds to the case when 

=Y X , implying identical images even after the transformation stage. In general, β  is 

not equal to one. The choice of β  value was derived from subjecting four frequently 

studied images in an image compression problem, and the estimated value is ranged 

from 1.0001 to 38.5711. It is noted that if a different image problem was studied, a 

different set of β  values should be considered. 

 

5.1.3 Selection of p and n 

 The feature vectors 1 2, , ,i i piX X X
′ =  …X  and 1 2, , ,i i piY Y Y

′ =  …Y  have the 

same summary statistics representing the images. For example, in the compression 

problem, 1iX  and 1iY  are the image luminance, while 2iX  and 2iY  may refer to image 

contrast. In general, it is sufficient to consider 5p ≤  since most of the imaging 

applications used only one image attribute such as luminance or contrast as their input, 

while MSSIM utilized two image attributes. For colour image, three-dimensional 

feature vector may be used.  

The choice of n is simply to investigate the sampling properties of the estimated 

parameters β̂  and 2

pR . Sample sizes used in the simulation are n = 10, 50, 100, 250, 

1000 and 4000. These values are selected to represent the approximate number of data 

calculated from an image based on 8 8×  window size. In JPEG compression problem, a 

standard test image can be dissected into sub-images of size of 8 8× , to allow for 

suitable value of sample sizes (n).  
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5.1.4 Selection of σ  and λ  

 Various values of variance of the random error ε  are also considered. In image 

applications, the larger value of error variance causes the higher level of noise in an 

image. Note that an error term with zero mean and 10 standard deviations can yield a 

completely distorted image. Therefore this simulation study will only consider standard 

deviation, 5,10σ =  to represent different degrees of image noise. 

 It was assumed that the MULFR model has the ratio of error variances equals to 

one. This assumption may not be true in some imaging applications. The choice of λ  

value was derived from a pilot experiment in an image compression problem, and the 

estimated value is ranged from 1.0062 to 91.1108. 

 

5.1.5 Selection of Distributions for iε  and iδ  

 Both iε  and iδ  are initially choose to be multivariate normal as defined in the 

MULFR model. It is of interest to see if violation of the normality assumption will 

affect the estimation of parameters, in particular 2

pR .  

 A total of 27 distributions of iε  are being considered in this study involving one 

normal distribution and 26 non-normal distributions. The varying degrees of non-

normality are achieved by introducing increasing levels of skewness and kurtosis into 

the generated data. Non-normality exists in many image processing applications since 

the transformed image is usually subjected to noise which has a non-normal distribution. 

For example, the Laplacian noise generated by JPEG compression process follows a 

Laplace distribution or Double exponential distribution (Cheng & Cheng, 2009), the 

shot noise has a Poisson distribution and Salt & Pepper noise caused by dead pixels, 

analog-to-digital converter and transmission processes has flat-tail error distribution. It 

is common in imaging applications to assume that the ‘original’ image is noise-free or 

this original image is subjected to Gaussian white noise. 
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5.2  Monte Carlo Simulation 

5.2.1  Monte Carlo Simulation Procedure 

Program subroutines (generate_error, Rm2normal) are written using MATLAB 

7.1 environment to generate the simulation data needed for this study. For a particular 

choice of 1, , pα α =  …α , β , p, n, λ , σ  and specified error distribution, the simulation 

processes can be explained by the following procedure. 

 

Step 1:  Select a set of frequently studied images which is represented by 

1 2, , ,i i piX X X
′ =  …X , 1, 2, ,i n= …  of size p n× . 

Step 2:  Select the parameters values of 1, , pα α =  …α  and β . Obtain the 

1 2, , ,i i piY Y Y
′ =  …Y  by using the equation β= +Y α X  with fixed λ  

and σ  values. 

Step 3:  Generate two sets of 1p×  random errors, 1e  and 2e  using standard 

normal generator RANDN. This random errors can be transformed to a 

pre-defined distribution with mean zero and variance 2σ  using 

Equation (5.9) in the next section to obtain the p-dimensional random 

errors 1 2, , ,i i piδ δ δ
′  …δ = and 1 2, , ,i i piε ε ε

′  …ε =  respectively. 

Step 4:  Add the random errors ε  and δ  into Y  and X  correspondingly to 

obtain the observed random values y  and x , respectively.  

Step 5:  Repeat Step 3 and Step 4 to derive ( ), , 1,2, ,i i i n= …x y  using Equation 

(4.2). 

Step 6:  Calculate β̂ , followed by α̂ , X̂  and 2σ̂  using Result 3 in Section 4.1.2. 

Finally calculate λ̂  as defined by constraint (iv) in Section 4.1.2 and 
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2

pR  using Result 6 in Section 4.3. The confidence interval for 2

pR  is 

calculated by using Result 7, Section 4.4.6. 

Step 7:  Repeat Steps 3 to 6 to obtain � replicates of the statistics in Step 5. 

( )10000� = . 

Step 8:  Compute the sample statistics 2

pR , β̂ , ˆbias , ŜD , ˆMSE  and λ̂  as 

defined in Equations (5.3) to (5.8) over �  data sets of the estimators.  

Step 9:  Repeat for different choice of 1, , pα α =  …α , β , p, n, λ , σ  and 

selected distribution of ε . 

 

The sample statistics such as sample mean, bias, standard deviation and mean 

square error for β̂  (similarly for 2

pR ) computed in Step 8 are used to measure the effects 

of changing parameter values and non-normality on the estimation of β  and 2

pR . These 

sample statistics are given below; 

1

1ˆ ˆ
�

s

s

β β
� =

= ∑ , 1,2, ,s S= …  where S is the simulation size   (5.3) 

ˆˆbias β β= −          (5.4) 

( ) ( )
2

1

1 ˆ ˆˆ
1

S

s

s

SD β β
S =

= −
− ∑        (5.5) 

2 2ˆ ˆ ˆMSE SD bias= +         (5.6) 

1

1ˆ ˆ
�

s

s

λ λ
� =

= ∑  where ˆsλ  is the ratio of error variances for the s-iteration (5.7) 

2 2

1

1 �

p Ps

s

R R
� =

= ∑         (5.8) 
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5.2.2 Transformation to a �on-�ormal Distribution 

 There are many ways to perform a one-to-one transformation of a normal 

distributed variable to a unimodal non-normal distribution. Power transformation such 

as Box & Cox (1964) is a standard reference and several others are discussed in Johnson 

et al. (1994). A simple quadratic method used by Pooi (2003) and Ng (2006) has been 

chosen in this study because it is capable of generating a wide range of unimodal 

distributions which are skewed or having thin waist with known skewness and kurtosis 

values. Let e  be a random error with the standard normal distribution and ( )1 2 3, ,γ γ γ=γ  

a vector of constant values. Consider the following non-linear function of e : 

2 3
1 2

2 3
1 2 3

1
, 0

2

1
, 0

2

γ
γ e γ e e

ε
γ

γ e γ γ e e

 + + − ≥ 
  

= 
+  + − <   

     (5.9) 

in which the constants tγ ; 1, 2,3t =  are such that for small value 0q > , ε  is a one-to-one 

function of e  when qe Z>  when Prob{ }
2

q

q
Z Z> =  where Z  has the standard normal 

distribution.  

 The mean of ε  is always zero. The shape of the distribution of ε  will vary as 

the value of γ  varies. If 2 0γ = , then ε  has the normal distribution with mean zero and 

variance 2

1γ .  As the standard normal distribution has a third and fourth moments equal 

to zero and three respectively, the severity of departure from normality may be 

measured by the sample third and fourth moments (Pooi, 2003; Ng, 2006) of iε ; 

1,2, ,i n= …  given by 

2

3
3 3 2

m
m

m
=  and 

2

4
4 2

m
m

m
=  

where 2

2

1

1

1

n

i

i

m ε
n =

=
− ∑ , 

( )
3

3

1

1

31

n

i

i

m ε
n

n
=

=
−

∑  and 

( )
4

4

1

1

41

n

i

i

m ε
n

n
=

=
−

∑ . 
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In practice the error terms are non-normal, for example in JPEG compression the 

errors have a Laplacian distribution. Henceforth, the generated values of 3m  and 4m  

will correspond to a particular Laplacian error term as determine by 

( )0.015819,0.568667, 1.000010= −γ .  

The following Figures 5.1 to 5.3 show some examples of probability density 

function for various non-normal distributions transformed by Equation 5.9. Figure 5.1 

for example, indicates the plots for a normal distribution with ( ) ( )3 4, 0.0,3.0m m =  

derived by using ( )1,0, 1= −γ , a Laplacian distribution with ( ) ( )3 4, 0.0,12.0m m =  

derived by using ( )0.015819,0.568667, 1.000010= −γ and a symmetry distribution with 

( ) ( )3 4, 0.0,2.2m m =  derived by using ( )1.273796, 0.174687, 0.999993= − −γ . Figure 

5.2 compares the normal distribution and two right-skewed distributions with 

( ) ( )3 4, 1.5,6.7m m =  and ( ) ( )3 4, 3.0,16.0m m = . Whereas, Figure 5.3 compares the 

normal distribution and two left-skewed distributions with ( ) ( )3 4, 1.5,7.5m m = −  and 

( ) ( )3 4, 3.0,16.7m m = − . 
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Figure 5.1: Probability density function of ε  with ( ) ( ) ( ) ( )3 4

, 0.0,3.0 , 0.0,2.2 , 0.0,12.0m m =  
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Figure 5.2: Probability density function of ε  with ( ) ( ) ( ) ( )3 4

, 0.0,3.0 , 1.5,6.7 , 3.0,16.0m m =  
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Figure 5.3: Probability density function of ε  with ( ) ( ) ( ) ( )3 4

, 0.0,3.0 , 1.5,7.5 , 3.0,16.7m m = − −  

 

 

5.3 Simulation A: Performance of the MULFR Model When the Basic 

Assumptions are Satisfied 

The objective of this subsection is to investigate the effects of changing values 

of β , n, p and σ  on the performance of MULFR model when their ratio of error 

variances, 1λ = and both errors δ  and ε  are normally distributed. In Simulation A, 

some parameters values are fixed where [ ]0, ,0= …α , 1,2,5p =  and 

10,50,100, 250,1000,4000n = . Other parameters values are changed in three cases: (i) 
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1, 1σ β= = , (ii) 1σ =  and 1.5,10,40β = , (iii) 10β =  and 5,10σ =  which should 

covered a broad range of image type. 

 

5.3.1 Both δ  and ε  are �ormally Distributed, 1λ =  and 1σ = , 1β =  

 Under the given set of condition ( )1, 1, 1λ σ β= = = , Table 5.1 clearly show that 

when all the model assumptions are satisfied, the parameters β  and 2

PR  are well 

estimated, in the sense that their average values equal to the true values and also 

because of minimal mean square errors and a negligible length for confidence intervals. 

 The parameters are also well estimated for modest sample size ( )10n =  and 

moderately high dimension ( )5p = .  

  

Table 5.1: All model assumptions satisfied with 1, 1, 1λ σ β= = =  

  
n λ  β̂  ˆ

ˆ
β

MSE  2

PR  2
ˆ

PR
SD  2

ˆ
PR

MSE  
Length 

( )2PCI R  

10 1.0000 1.0000 4.80E-30 1.0000 1.66E-15 2.77E-30 0.0000 

50 1.0000 1.0000 2.55E-29 1.0000 1.97E-15 3.87E-30 0.0000 

100 1.0000 1.0000 5.04E-29 1.0000 1.84E-15 3.38E-30 0.0000 

250 1.0000 1.0000 1.10E-28 1.0000 2.14E-15 4.58E-30 0.0000 

1000 1.0000 1.0000 1.31E-28 1.0000 2.73E-15 7.46E-30 0.0000 

p=1 

4000 1.0000 1.0000 1.49E-28 1.0000 4.64E-15 2.16E-29 0.0000 

10 1.0000 1.0000 9.40E-30 1.0000 3.21E-15 1.03E-29 0.0000 

50 1.0000 1.0000 8.30E-30 1.0000 1.89E-15 3.58E-30 0.0000 

100 1.0000 1.0000 4.14E-29 1.0000 2.65E-15 7.05E-30 0.0000 

250 1.0000 1.0000 5.01E-29 1.0000 2.42E-15 5.84E-30 0.0000 

1000 1.0000 1.0000 1.63E-22 1.0000 3.43E-15 1.18E-29 0.0000 

p=2 

4000 1.0000 1.0000 8.37E-29 1.0000 6.43E-15 4.13E-29 0.0000 

10 1.0000 1.0000 2.60E-30 1.0000 2.04E-15 4.17E-30 0.0000 

50 1.0000 1.0000 7.36E-30 1.0000 2.54E-15 6.43E-30 0.0000 

100 1.0000 1.0000 2.12E-29 1.0000 3.12E-15 9.73E-30 0.0000 

250 1.0000 1.0000 2.35E-29 1.0000 2.98E-15 8.87E-30 0.0000 

1000 1.0000 1.0000 3.17E-24 1.0000 4.07E-15 1.65E-29 0.0000 

p=5 

4000 1.0000 1.0000 1.69E-25 1.0000 6.88E-15 4.73E-29 0.0000 
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5.3.2 Repeating Section 5.3.1 to Compare β = 1.5, 10, 40 

 Table 5.2 shows simulation results using the given set of 

condition ( )1, 1, 1.5λ σ β= = = . The parameters β  and 2

PR  are still well estimated with 

small mean square errors and narrow confidence intervals at modest sample size 

( )10n = and moderately high dimension ( )5p = . 

 Figure 5.4 and Figure 5.5 (see Appendix A1) summarize the mean square errors 

for β̂  and length of confidence interval for 2

PR , respectively when the 

true 1.5,10,40β = . The parameters  β  and 2

PR  are well estimated for the selected true 

β  values, dimensions and sample sizes. 

 

Table 5.2: All model assumptions satisfied with 1, 1, 1.5λ σ β= = =  

  
n λ  β̂  ˆ

ˆ
β

MSE  2

PR  2
ˆ

PR
SD  2

ˆ
PR

MSE  
Length 

( )2PCI R  

10 1.0000 1.4996 3.50E-05 1.0000 1.91E-05 1.85E-09 1.034E-03 

50 1.0000 1.4995 6.80E-06 1.0000 8.86E-06 1.95E-09 5.619E-04 

100 1.0000 1.4995 3.35E-06 1.0000 5.97E-06 1.80E-09 4.008E-04 

250 1.0000 1.4996 1.33E-06 1.0000 3.45E-06 1.51E-09 2.505E-04 

1000 1.0000 1.4995 5.16E-07 1.0000 1.83E-06 1.65E-09 1.285E-04 

p=1 

4000 1.0000 1.4996 2.60E-07 1.0000 8.73E-07 1.51E-09 6.405E-05 

10 1.0000 1.4995 1.99E-05 1.0000 2.38E-05 3.03E-09 1.627E-03 

50 1.0000 1.4995 3.69E-06 1.0000 8.54E-06 1.84E-09 8.022E-04 

100 1.0000 1.4995 1.69E-06 1.0000 5.84E-06 1.72E-09 5.517E-04 

250 1.0000 1.4996 6.90E-07 1.0000 3.33E-06 1.40E-09 3.549E-04 

1000 1.0000 1.4996 3.15E-07 1.0000 1.66E-06 1.42E-09 1.781E-04 

p=2 

4000 1.0000 1.4996 2.24E-07 1.0000 8.51E-07 1.46E-09 8.929E-05 

10 1.0000 1.4997 3.58E-06 1.0000 1.41E-05 1.07E-09 1.442E-03 

50 1.0000 1.4995 1.26E-06 1.0000 8.60E-06 1.87E-09 7.769E-04 

100 1.0000 1.4996 7.30E-07 1.0000 5.36E-06 1.46E-09 5.506E-04 

250 1.0000 1.4995 4.72E-07 1.0000 3.58E-06 1.62E-09 3.529E-04 

1000 1.0000 1.4996 2.30E-07 1.0000 1.68E-06 1.40E-09 1.783E-04 

p=5 

4000 1.0000 1.4996 1.97E-07 1.0000 8.42E-07 1.43E-09 8.899E-05 

 

 



 113 

lambda=1,sigma=1,beta=1.5

0.00E+00

5.00E-06

1.00E-05

1.50E-05

2.00E-05

2.50E-05

3.00E-05

3.50E-05

4.00E-05

10 50 100 250 1000 4000

Sample size

p=1

p=2

p=5

 

lambda=1,sigma=1,beta=10

0.00E+00

2.00E-03

4.00E-03

6.00E-03

8.00E-03

1.00E-02

1.20E-02

1.40E-02

1.60E-02

1.80E-02

10 50 100 250 1000 4000

Sample size

p=1

p=2

p=5

 

lambda=1,sigma=1,beta=40

0.00E+00

5.00E-02

1.00E-01

1.50E-01

2.00E-01

2.50E-01

3.00E-01

3.50E-01

10 50 100 250 1000 4000

Samp le size

p=1

p=2

p=5

 
Figure 5.4: Mean square error for β̂  when 1, 1λ σ= =  and 1.5,10,40β =  

 

 

M
S
E
 f
o
r 
sl
o
p
e 
es
ti
m
at
o
r 

M
S
E
 f
o
r 
sl
o
p
e 
es
ti
m
at
o
r 

M
S
E
 f
o
r 
sl
o
p
e 
es
ti
m
at
o
r 



 114 

sigma=1,lambda=1,beta=1.5
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Figure 5.5: Length of confidence interval for 2

P
R  when 1, 1λ σ= =  and 1.5,10,40β =  
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5.3.3 Both δ  and ε  are �ormally Distributed, 1λ = , 10β =  and 1,5,10σ =  

 Figure 5.6 and Figure 5.7 (see Appendix A2) summarize the mean square errors 

for β̂  and length of confidence interval for 2

PR , respectively when the true error 

standard deviation 1,5,10σ = .  The parameters β  and 2

PR  are well estimated for the 

selected true β  values, dimensions and sample sizes. 
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lambda=1,sigma=10,beta=10
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Figure 5.6: Mean square error for β̂ when 1, 10, 1,5,10λ β σ= = =  
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Figure 5.7: Length of confidence interval for 2

P
R  when 1, 10, 1,5,10λ β σ= = =  

 

 

5.4 Simulation B: Robustness of the MULFR Model When the Basic 

Assumptions are Violated 

This subsection investigates the robustness of the estimators when one of the 

basic assumptions is violated. Two types of violation on the assumptions made are; (i) 

one of the random errors, say ε , is either normal ( )3 40.0, 3.0m m= =  or non-normally 

distributed and (ii) the ratio of error variances, 1λ ≠ . For the first case, 27 types of error 

distributions were obtained by using quadratic method illustrated in Section 5.2.2. 

These distributions are summarized by average skewness ( )3m and average kurtosis 

( )4m as are given in Table 5.3. Other parameters values were set to [ ]0, ,0= …α , 1β = , 

1σ = , 1λ = , 1,2,5p =  and 10,100,1000n =  due to heavily computation times. For the 

second case, the ratio of error variances change among values 1.5,10,30,100λ =  while 

other parameter values were set to [ ]0, ,0= …α , 10β = , 1σ = , 1,2,5p = , 

10,50,100,1000n = , and ε  and δ  are normally distributed.  
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5.4.1 Robustness of β̂  and 
2

PR  to �on-�ormality 

 Table 5.3 shows an example of simulation results when the error ε  is deviated 

from normal assumption for small sample size 10n =  and 1p = . It is observed that the 

estimation of β  and 2

PR  are good for different distributions with small mean square 

errors and confidence intervals. Similar results on ˆ
ˆ

β
MSE , 2

ˆ
PR

MSE  and the length of 

confidence interval for 2

PR  using different sample sizes, ( )10,100,1000n =  and 

dimensionalities ( )1,2,5p =  are summarized in Figure 5.8 to Figure 5.9. 

 

Table 5.3: Parameters estimation, standard deviation, mean square error and length of confidence interval 

for β̂  and 2

P
R  involving 1, 1, 1, 1, 10λ σ β p n= = = = =  and varying distributions 

3m  4m  β̂  ˆ
ˆ

β
MSE  2

PR  2
ˆ

PR
SD  2

ˆ
PR

MSE  
Length 

( )2PCI R  

0.0 3.0 1.0000 0.00E-00 1.0000 0.00E+00 0.00E+00 0.000E+00 

0.0 2.2 1.0000 5.67E-07 1.0000 3.73E-06 1.93E-11 4.743E-04 

0.0 12.0 1.0000 6.56E-06 1.0000 3.86E-05 2.20E-09 1.670E-03 

0.5 3.0 1.0000 8.00E-07 1.0000 4.76E-06 3.28E-11 5.431E-04 

0.5 11.6 1.0000 6.57E-06 1.0000 3.14E-05 1.64E-09 1.641E-03 

1.0 4.5 1.0000 2.31E-06 1.0000 1.10E-05 2.09E-10 9.486E-04 

1.0 12.8 1.0000 7.44E-06 1.0000 4.15E-05 2.59E-09 1.749E-03 

1.5 6.7 1.0000 4.40E-06 1.0000 2.35E-05 8.81E-10 1.326E-03 

1.5 13.0 1.0000 7.37E-06 1.0000 4.19E-05 2.57E-09 1.715E-03 

2.0 9.3 1.0000 6.82E-06 1.0000 3.37E-05 1.92E-09 1.674E-03 

2.0 14.4 1.0000 8.81E-06 1.0000 5.37E-05 4.10E-09 1.867E-03 

2.5 13.3 1.0001 9.62E-06 1.0000 4.74E-05 3.73E-09 1.988E-03 

2.2 16.0 1.0000 1.05E-05 1.0000 7.43E-05 7.21E-09 1.995E-03 

3.0 16.0 1.0000 1.43E-05 0.9999 6.32E-05 6.91E-09 2.364E-03 

2.7 16.0 1.0000 1.18E-05 1.0000 7.75E-05 8.26E-09 2.165E-03 

-0.5 4.1 1.0000 6.34E-07 1.0000 4.34E-06 2.51E-11 4.841E-04 

-0.5 11.9 1.0000 6.51E-06 1.0000 3.30E-05 1.74E-09 1.644E-03 

-1.0 5.7 1.0000 2.05E-06 1.0000 1.32E-05 2.46E-10 9.109E-04 

-1.0 11.6 1.0000 6.32E-06 1.0000 4.15E-05 2.43E-09 1.636E-03 

-1.5 7.5 1.0000 4.14E-06 1.0000 2.53E-05 9.13E-10 1.275E-03 

-1.5 12.1 1.0000 7.22E-06 1.0000 4.35E-05 2.73E-09 1.718E-03 

-2.0 10.2 1.0000 6.89E-06 1.0000 3.63E-05 2.06E-09 1.659E-03 

-2.0 14.7 1.0000 8.92E-06 1.0000 5.37E-05 4.18E-09 1.906E-03 

-2.5 13.5 1.0000 9.98E-06 1.0000 5.99E-05 5.04E-09 1.956E-03 

-2.2 16.7 1.0000 1.03E-05 1.0000 7.46E-05 7.36E-09 2.023E-03 

-3.0 16.7 1.0000 1.26E-05 0.9999 7.21E-05 7.81E-09 2.275E-03 

-2.7 16.7 1.0000 1.15E-05 1.0000 8.28E-05 9.03E-09 2.116E-03 
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 Figure 5.8 (see Appendix A3) compares the mean square errors for β̂  obtained 

from the normal and non-normal distributions. The x-axis refers to varying ε  

distributions labelled by (skewness, kurtosis) as given in the first two columns, Table 

5.3. Figure 5.8(a) shows the effect of positive skewness and kurtosis, while Figure 5.8(b) 

displays the results for negative skewness and kurtosis. From the simulation study, it 

may be inferred that: 

(1) The more the ε  deviated (negative skewed or positive skewed) from normal 

distribution, the larger the ˆ
ˆ

β
MSE  value. For example the distributions 

( )3 42.2, 16.0m m= = , ( )3 42.7, 16.0m m= =  and ( )3 43.0, 16.0m m= =  in 

Figure 5.9(a), the ˆ
ˆ

β
MSE  increases as the skewness increases from 3 2.2m =  

to 3 3.0m =  at the same kurtosis 4 16.0m = . 

(2) The ˆ
ˆ

β
MSE  increases as the ε  has larger kurtosis value given a particular 

level of skewness. For example at 0.5 skewness, the distribution 

( )3 40.5, 11.6m m= =  has larger ˆ
ˆ

β
MSE  as compare to the distribution 

( )3 40.5, 3.0m m= = . 

(3) The ˆ
ˆ

β
MSE  increases as the sample size decreases when ε  deviated from 

normal distribution. 
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(a) Normal distribution and fourteen non-normal distributions with varying positive skewness and 

kurtosis values. 
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(b) Twelve non-normal distributions with varying negative skewness and kurtosis values. 

Figure 5.8: Mean square error for β̂  under varying error distributions when 1, 2,5p =  and 

10,100,1000n = . 
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(a) Normal distribution and fourteen non-normal distributions with varying positive skewness and 

kurtosis values. 
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(b) Twelve non-normal distributions with varying negative skewness and kurtosis values. 

Figure 5.9: Length of confidence interval for 2

P
R  under varying error distributions when 1, 2,5p =  and 

10,100,1000n = . 

 

 

 Figure 5.9 compares the length of confidence interval for 2

PR  obtained from the 

varying distributions. The x-axis was defined in the same manner as Figure 5.8. From 

the simulation study, it may be inferred that: 
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(1)  The length of confidence interval increases as the ε  deviated further 

(negative skewed or positive skewed) from normal distribution. 

(2)  The length of confidence interval increases as the ε  has larger kurtosis 

values. 

(3)  The length of confidence interval increases as the sample size decreases 

when ε  deviated from normal distribution. 

(4)  Generally, the length of confidence interval increases as the dimension 

increases except for the case when sample size is small ( )10n = . 

 Generally, the increases in ˆ
ˆ

β
MSE , 2

ˆ
PR

MSE  and the length of confidence interval 

for 2

PR  is due to the sample size, error variance, ratio of the error variances and non-

normality are negligible. For example, the largest ˆ
ˆ

β
MSE  value (see Figure 5.8) is 

51.43 10−×  and the largest length of confidence interval for 2

PR  (see Figure 5.9) is 

33.397 10−×  at error distribution with 3 3.0m =  and 4 16.0m =  (labelled with 14). These 

values are still considered very small and the estimated values were not significantly 

different from their true values. It is concluded that β̂  and 2

PR  are robust estimators 

even when the normality assumption is not satisfied. 

 

5.4.2 Robustness of β̂  and 
2

PR  to 1λ ≠  When 10β =  and 1σ =  

 Figure 5.10 and Figure 5.11 (see Appendix A4) show the mean square error for 

β̂  and the length of confidence interval for 2

PR , respectively when the true λ  =1.0, 1.5, 

10, 30 and 100. The parameters β  and 2

PR  are well estimated for the selected true λ  

values, dimensions and sample sizes ( )10,50,100,250,1000,4000n = . 
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Figure 5.10: Mean square error for β̂  when 1, 10, 1.0,1.5,10,30,100σ β λ= = =  
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Figure 5.11: Length of confidence interval for 2

P
R  when 1, 10, 1.0,1.5,10,30,100σ β λ= = =  

 

 

5.5 Properties of Maximum Likelihood Estimator, β̂  

 Result 4 in Section 4.2.1 showed that β̂  is an asymptotically an unbiased 

estimator of β . The unbiasedness of β̂  (and hence of 2

PR  since it is only depends on β̂ ) 

can be verified in Figure 5.4, Figure 5.6 and Figure 5.10 where there is a small mean 

square error for β̂ , for varying parameters conditions.  

 Furthermore, Figure 5.12 indicates that the estimated standard deviation of β̂  

approaches zero as the sample size increases. This trend verifies the result in Section 

4.2.3 and showed that β̂  (and 2

PR ) is a consistent estimator of β . 
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Figure 5.12: Consistency of β̂  
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5.6 Empirical Distribution of 
2

PR  

 In practice, there is one estimated value of 2

PR  from a given data set. Knowledge 

of the distribution of 2

PR  would be useful to investigate if 2

PR  is significantly far from 

the mean of 2

PR . The 10000 values of simulated 2

PR  from Section 5.1.2 were 

standardized using ( ) ( )2 2 2varP p PR R R− . The empirical cumulative density function 

(CDF) for 2

PR  is studied and compared with CDF for standard normal distribution. The 

CDF plots are shown in Figure 5.13 to Figure 5.18.  

 Three levels of 2

PR  values are considered empirically, they are high 2

PR  values 

with 2

pR  close to one (see Figure 5.13 and Figure 5.14), moderate 2

PR  values with 2

pR  

between 0.5 and 0.6 (see Figure 5.15 and Figure 5.16), and low 2

PR  values with 2

pR  

close to zero (see Figure 5.17 and Figure 5.18). These figures (after standardization) 

indicate that 2

PR  has non-symmetrical distribution for moderate sample sizes. A 

Kolmogorov-Smirnov one-sample goodness-of-fit test (Daniel, 1990) is applied to 

determine whether the sampled population of 2

PR  is normally distributed as stated in 

hypothesis below: 

  ( ) ( )0 0:H F x F x=  for all values of x 

  ( ) ( )1 0:H F x F x≠  for at least one value of x 

Let ( )0F x  be the hypothesized standard normal distribution function and ( )S x  

designates the empirical distribution function of standardized 2

PR . Specifically, 

( )S x = the proportion of sample observations less than or equal to x. 

The two-sided test statistics is 

   ( ) ( )0sup
x

D S x F x= −  
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Reject 0H  at the α specified level of significance if the test statistics exceeds the 1 α−  

quantiles of the Kolmogorov test statistic. 

 The hypothesis test results are summarized in Table 5.4. It indicates that the null 

hypothesis is not rejected for at least moderate sample sizes ( )250n ≥  when 2

PR  value 

is large and it is not significant at large sample sizes ( )1000,4000n =  when 2

PR  value is 

moderate and small. This implies that 2

PR  is asymptotically (standard) normally 

distributed, which can also be derived from Section 4.2.4 where β̂  has asymptotical 

normal distribution.  
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Figure 5.13: Empirical cumulative density functions of 2

P
R  at high correlation value (average 2 0.99

P
R ≈ ) 

and CDF for standard normal distribution. Given 1p =  
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Figure 5.14: Empirical cumulative density functions of 2

P
R  at high correlation value (average 2 0.99

P
R ≈ ) 

and CDF for standard normal distribution. Given 5p = . 
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Figure 5.15: Empirical cumulative density functions of 2

P
R  at moderate correlation value (average 

2 0.56
P

R ≈ ) and CDF for standard normal distribution. Given 1p = . 

 

 

 

 

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

sample CDF

normal CDF

-5 -4 -3 -2 -1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

sample CDF

normal CDF

 
  (a) 5, 10p n= =      (b) 5, 50p n= =  

-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

sample CDF

normal CDF

-5 -4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

sample CDF

normal CDF

 
  (c) 5, 100p n= =      (d) 5, 250p n= =  



 132 

-5 -4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

sample CDF

normal CDF

-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

sample CDF

normal CDF

 
  (e) 5, 1000p n= =     (f) 5, 4000p n= =  

Figure 5.16: Empirical cumulative density functions of 2

P
R  at moderate correlation value (average 

2 0.58
P

R ≈ ) and CDF for standard normal distribution. Given 5p = . 
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Figure 5.17: Empirical cumulative density functions of 2

P
R  at low correlation value (average 2 0.1

P
R ≈ ) 

and CDF for standard normal distribution. Given 1p = . 
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Figure 5.18: Empirical cumulative density functions of 2

P
R  at low correlation value (average 2 0.1

P
R ≈ ) 

and CDF for standard normal distribution. Given 5p =  

 

 

 

Table 5.4: Summary for Kolmogorov-Smirnov test. 

High 
2

P
R  value Moderate 

2

P
R  value Low 

2

P
R  value 

p=1 p=5 p=1 p=5 p=1 p=5 

n 
H0 

true? p-value 

H0 

true? 

p-

value 

H0 

true? 

p-

value 

H0 

true? 

p-

value 

H0 

true? 

p-

value 

H0 

true? 

p-

value 

10 No 

1.29E-

35 No 

1.36E-

27 No 

1.37E-

59 No 

1.14E-

37 No 

2.12E-

112 No 

1.02E-

36 

50 No 

8.71E-

08 No 

4.67E-

09 No 

2.00E-

09 No 

7.05E-

13 No 

1.74E-

28 No 

5.09E-

20 

100 No 

9.40E-

05 No 0.003 No 

2.93E-

08 No 

7.61E-

08 No 

1.89E-

10 No 

7.96E-

13 

250 Yes 0.0551 No 0.0051 No 0.0019 No 0.0017 No 

1.04E-

08 No 

2.60E-

04 

1000 Yes 0.4335 Yes 0.5038 Yes 0.1123 Yes 0.2752 Yes 0.112 Yes 0.2403 

4000 Yes 0.677 Yes 0.9677 Yes 0.662 Yes 0.5907 Yes 0.213 Yes 0.36 

 

 

5.7 Summary 

 Simulations were conducted to study the performance of 2

PR  (and β̂ ) under a 

specific set of parameter values. These parameters are β , σ , n, p, λ  and ' sε  

distribution. The selection of parameters values were based on the real image 

applications.  

 Several results were observed from the simulation studies. When the 

assumptions of unit ratio of error variances and normality are satisfied, both β̂  and 2

PR  

are well estimated for various combinations of parameters. These parameters 
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combinations are ( ){ }, | 1,1.5,10,40; 1,5,10β σ β σ= =  for all 1,2,5p =  and 

10,50,100, 250,1000,4000n = . 

 Both β̂  and 2

PR  are robust estimators when there is mild violation of normality 

assumption of the error term, ε . The skewness and kurtosis of these non-normal 

distributions considered a range between [ ]3 3.0,3.0m ∈ −  and [ ]4 2.2,16.7m ∈ , 

respectively. Similar results were observed when the assumption of 1λ =  is violated. 

Both  β̂  and 2

PR  still perform well for 100λ ≤ .  

It was showed that β̂  and 2

PR  still maintained a good properties of consistent 

and unbiased estimators at small sample size of 10n = . Meanwhile, 2

PR  has 

asymptotically normal distribution for moderate sample sizes ( )250n ≥ . This condition 

of moderate sample size is not difficult to fulfill as the number of data in an image are 

usually very large.  

 This simulation study considered a broad range of conditions of comparing two 

images by changing the parameters values. However, it is impossible to cover all 

possible types of images that may occur in the real applications. For example, this study 

only discussed the Full Reference case where the same information is available from 

both the ‘transformed’ image Y and the reference image X. In JPEG compression 

application, the transformed Y image is referred to JPEG codec image that subjected to 

Laplacian noise. The image X is a perfect full reference when it is noise-free, while it is 

called an imperfect full reference when significant amount of noise δ  is presented. 

Another issue that was not addressed theoretically is the uncorrelated errors case. For 

example, the neighbour pixels within an image tend to be highly correlated. In fact, this 

issue was solved by an appropriate choice of window size of 8 8×  in JPEG compression 

(Gonzalez et al., 2004) to minimize the possible correlation between windows. 


